国君宏观:人工智能辅助人、替代人、成为“人”

人工智能的发展路径从辅助人(为劳动力装备更多“智能资本”)、替代人(解决“鲍莫尔病”),终极形态可能是成为“人”(人工智能与人高度融合)。未来随着人工智能商业化加速落地,将催生上游新能源电力增量投资,中游带动智能算力基础设施补短板(芯片、液冷服务器等),而下游针对垂直领域训练的小模型(汽车、办公、医疗等)可能会更快发挥商业价值。

1、“人工智能”的概念最早于1956年提出,从诞生至今大致经历了三波发展热潮,分别是20世纪50年代至70年代中期,70年代至90年代(专家系统、知识工程)以及90年代至今(移动互联网、云计算)。如今大语言模型引领人工智能新风口,国内外各大公司纷纷投入到这场“军备竞赛”中,但同时也引发了数据安全和伦理等问题的担忧。

(1)辅助人:人工智能的出现首先是辅助人类开展工作,通过为劳动力装备人工智能“资本”,从而提高劳动生产率;人工智能将为产业开启智能化新时代。

(2)替代人:与历次科技革命中机器替代人的过程不同,人工智能对人的替代将集中在第三产业,有望从根本上解决三产劳动生产率低下的“鲍莫尔病”。

(3)成为“人”:人工智能发展的终极目的是实现与人类的融合,一方面人工智能可以作为人类器官的延伸和强化,另一方面人类的情感和意识也可以被“数字化。”

(1)上游催生新能源电力增量投资:人工智能强大的算力背后是不容忽视的电力消耗,如果AI大规模商用加速落地,则意味着全球将产生大量电力缺口;

(2)中游带动智能算力基础设施补短板:算力规模的迅速增长带来对智能算力基础设施的巨大需求,涉及到高算力芯片、服务器液冷等技术;

(3)在大模型的基础上,针对垂直领域训练的小模型可能在短期内更快发挥商业价值:例如智能汽车、智能办公、医疗健康管理等领域。

4、从紧迫性上来看,上游电力基础设施投资是短期各国均需要解决的发展瓶颈;从国内与国际差距来看,高算力芯片将成为决定未来长期人工智能发展水平的关键。至于当前面临的AI中文训练数据偏少、处理中文事务能力偏弱的问题,则可以后续依托国内庞大的市场,增加中文数据供给来解决。

ChatGPT的问世引发市场对人工智能持续不断的追捧。人工智能的终极应用形态是什么?对产业链和宏观经济究竟会产生哪些影响?本报告将对这些问题做出初步回答。

“人工智能”的概念最早于1956年提出,经过七十余年的发展,从其诞生到现在的ChatGPT,大致经历了三波发展热潮。

1950年,Alan Turing发表了“计算机器和智能”,提出了机器思维的概念,如果一台机器能够通过电传设备与人类展开对话而能不被辨别出其机器身份,那么称这台机器具有智能,即后来的“图灵测试”。

1956年,为解决人工神经网络“结构复杂”问题,科学家齐聚美国达特茅斯学院召开首次人工智能研讨会,正式提出“人工智能”概念,这一年也被称为“人工智能元年”。

由于人工神经网络理论的突破,20世纪60年代迎来第一轮人工智能发展浪潮。1965年,世界上第一个交互式计算机程序ELIZA诞生,俗称聊天机器人;1966年,美国斯坦福国际研究所研制首台采用人工智能的移动出机器人Shakey;1968年则诞生了早期自然语言计算机程序SHRDLU。

但进入20世纪70年代,人工智能先后在机器定理证明、机器翻译等领域遭遇瓶颈,且受限于当时计算机有限的内存和处理速度,政府大幅缩减了人工智能研发经费支持,人工智能陷入低谷。

20世纪70年代中后期,专家系统、知识工程等引发人工智能第二轮热潮。20世纪80年代,多层感知机、反向传播算法、神经网络的出现提升了计算机的计算及逻辑推理能力,为深度学习和强化学习奠定了重要基础,同时专家系统的出现赋予了人工智能知识属性,人工智能发展迎来第二波热潮。

20世纪80年代,部分人工智能产品进入日常生活。1980年,WABOT-2在早稻田大学诞生,使人形机器人与人交流以及阅读乐谱并在电子琴上播放音乐成为可能。1981年日本政府拨款研发第五代计算机项目,即“人工智能计算机”,随后英国、美国等国家纷纷跟进。1988年罗洛·卡彭特开发了聊天机器人Jabberwacky,首次“以有趣、娱乐、幽默的形式模拟人类对线年代末,专家系统由于庞大的维护费用和过窄的知识领域导致其在商界失宠,各国纷纷减少对专家系统的资助,从而引发人工智能的第二次寒冬。

1997年,计算机深蓝完胜象棋大师卡斯帕罗夫,加速推进了机器学习和人工神经网络的研发工作。2006年深度学习理论的提出解决了训练多层神经网络时的过拟合问题,随后云计算等计算机硬件设施不断取得突破性进展,为人工智能提供足够的算力,以支持复杂算法的运行。

2011年,苹果推出siri,使用自然语言用户界面来向其人类用户推断、观察、回答和推荐事物,标志着计算机交互正转向语音控制;2016年,AlphaGo在围棋竞技中击败李世石,标志着AI具备了自我迭代和学习强化的能力。2016年,Hanson Robotics公司创建了名为Sophia的人形机器人,她也被称为第一个“机器人公民”,因为她与真实的人类相似,能够看到(图像识别),做出面部表情,并通过人工智能进行交流。

ChatGPT是近年来大模型流行的产物,自此人工智能从“弱人工智能”向“强人工智能”阶段迈进,从而为人工智能在各个领域的应用打开了想象空间。

大语言模型是指使用大量文本数据训练的深度学习模型,可以生成自然语言文本或理解语言文本的含义。大语言模型可以处理多种自然语言任务,如文本分类、问答、对话等,是通向人工智能的一条重要途径。目前,国内外有很多机构和公司在该领域深耕,其中有比较知名的Open AI、谷歌、百度和华为。

ChatGPT由Open AI团队研发创造,2020年9月,Open AI授权微软使用GPT-3模型,微软成为全球首个享用GPT-3能力的公司。2022年,Open AI发布ChatGPT模型用于生成自然语言文本。GPT模型是一种自然语言处理(NLP)模型,使用多层变换器(Transformer)来预测下一个单词的概率分布,通过训练在大型文本语料库上学系到的语言模式来生成自然语言模型。GPT-3有1750亿参数,作为一个自监督模型可以完成自然语言处理的绝大部份任务:生成代码、撰写文章、回答问题等。

2023年3月15日,Open AI发布了多模态预训练大模型GPT4.0,与3.0版本相比,GPT4.0可以接受图像作为输入并生成说明、分类和分析;并且更具创造性和协作性,可以生成、编辑并与用户一起完成创意和写作任务,例如创作歌曲、编写剧本或学习用户的写作风格;4.0版本可以处理超过25000个单词的文本,允许使用长格式内容创建、扩展对话以及文档搜索和分析。

2023年2月,谷歌发布会公布了聊天机器人Bar。

发表回复

您的电子邮箱地址不会被公开。 必填项已用 * 标注